
Object-Oriented Programming

Formal Inheritance Rules

Inheritance occurs on attribute name reference—the object.name lookup at the heart of object-oriented code—

whenever object is derived from a class. It differs in classic and new-style classes, although typical code often

runs the same in both models.

Classic classes: DFLR

In classic classes (the default in 2.X), for name references, inheritance searches:

1. The instance

2. Then its class

3. Then all its class’s superclasses, depth-first and then left-to-right

The first occurrence found along the way is used. This order is known as DFLR.

This reference search may be kicked off from either an instance or a class; attribute assignments normally store in

the target object itself without search; and there are special cases for __getattr__() (run if the lookup failed to

find a name) and __setattr__() (run for all attribute assignments).

New-style classes: MRO

Inheritance in new-style classes (the standard in 3.X and an option in 2.X) employ the MRO—a linearized path

through a class tree, and a nested component of inheritance, made available in a class’s __mro__ attribute. The

MRO is roughly computed as follows:

1. List all the classes that an instance inherits from using the classic class’s DFLR lookup rule, and include a class

multiple times if it’s visited more than once.

2. Scan the resulting list for duplicate classes, removing all but the last (rightmost) occurrence of duplicates in the

list.

The resulting MRO sequence for a given class includes the class, its superclasses, and all higher superclasses up to

and including the implicit or explicit object root class at the top of the tree. It’s ordered such that each class

appears before its parents, and multiple parents retain the order in which they appear in the __bases__ superclass

tuple.

Because common parents in diamonds appear only at the position of their last visitation in the MRO, lower classes

are searched first when the MRO list is used later by attribute inheritance (making it more breadth-first than depth-

first in diamonds only), and each class is included and thus visited just once, no matter how many classes lead to it.

The MRO ordering is used both by inheritance (ahead) and by the super() call—a built-in function that always

invokes a next class on the MRO (relative to the call point), which might not be a superclass at all, but can be used

to dispatch method calls throughout a class tree visiting each class just once.

Example: non-diamonds

class D: attr = 3 # D:3 E:2

class B(D): pass # | |

class E: attr = 2 # B C:1

class C(E): attr = 1 # \ /

class A(B, C): pass # A

X = A() # |

print(X.attr) # X

DFLR = [X, A, B, D, C, E]

MRO = [X, A, B, D, C, E, object]

Prints "3" in both 3.X and 2.X (always)

Example: diamonds

class D: attr = 3 # D:3 D:3

class B(D): pass # | |

class C(D): attr = 1 # B C:1

class A(B, C): pass # \ /

X = A() # A

print(X.attr) # |

 # X

DFLR = [X, A, B, D, C, D]

MRO = [X, A, B, C, D, object] (retains last D only)

Prints "1" in 3.X, "3" in 2.X (or "1" if D(object))

New-Style inheritance algorithm

Depending on class code, new-style inheritance may involve descriptors, metaclasses, and MROs as follows (name

sources in this procedure are attempted in order, either as numbered or per their left-to-right order in “or”

conjunctions):

To look up an attribute name:

1. From an instance I, search the instance, its class, and its superclasses, as follows:

a) Search the __dict__ of all classes on the __mro__ found at I’s __class__.

b) If a data descriptor was found in step a, call its __get__() and exit.

c) Else, return a value in the __dict__ of the instance I.

d) Else, call a nondata descriptor or return a value found in step a.

2. From a class C, search the class, its superclasses, and its metaclasses tree, as follows:

a) Search the __dict__ of all metaclasses on the __mro__ found at C’s __class__.

b) If a data descriptor was found in step a, call its __get__() and exit.

c) Else, call a descriptor or return a value in the __dict__ of a class on C’s own __mro__.

d) Else, call a nondata descriptor or return a value found in step a.

3. In both rule 1 and 2, built-in operations (e.g., expressions) essentially use just step a sources for their implicit

lookup of method names, and super() lookup is customized.

In addition, method __getattr__() may be run if defined when an attribute is not found; method

__getattribute__() may be run for every attribute fetch; and the implied object superclass provides some

defaults at the top of every class and metaclass tree (that is, at the end of every MRO).

As special cases, built-in operations skip name sources as described in rule 3, and the super() built-in function

precludes normal inheritance. For objects returned by super(), attributes are resolved by a special context-

sensitive scan of a limited portion of a class’s MRO only, choosing the first descriptor or value found along the way,

instead of running full inheritance (which is used on the super object itself only if this scan fails); see super() in

“Built-in Functions”.

To assign an attribute name:

A subset of the lookup procedure is also run for attribute assignments:

• When applied to an instance, such assignments essentially follow steps a through c of rule 1, searching the

instance’s class tree, although step b calls __set_() instead of __get__(), and step c stops and stores in

the instance instead of attempting a fetch.

• When applied to a class, such assignments run the same procedure on the class’s metaclass tree: roughly the

same as rule 2, but step c stops and stores in the class.

The __setattr__() method still catches all attribute assignments as before, although it becomes less useful for

this method to use the instance __dict__ to assign names, as some new-style extensions such as slots, properties,

and descriptors implement attributes at the class level—a sort of “virtual” instance data mechanism. Some instances

might not have a __dict__ at all when slots are used (an optimization).

New-style precedence and context

New-style inheritance procedures effectively impose precedence rules on the foundational operation of name

resolution, which may be thought of as follows (with corresponding steps of the inheritance algorithm in

parentheses):

For instances, try:

1. Class-tree data descriptors (1b)

2. Instance-object values (1c)

3. Class-tree nondata descriptors (1d)

4. Class-tree values (1d)

For classes, try:

1. Metaclass-tree data descriptors (2b)

2. Class-tree descriptors (2c)

3. Class-tree values (2c)

4. Metaclass-tree nondata descriptors (2d)

5. Metaclass-tree values (2d)

Python runs at most one (for instances) or two (for classes) tree searches per name lookup, despite the presence of

four or five name sources. This may happen in addition to selecting a context-specific starting point per the MRO,

for code using the new-style super() built-in function.

See also “Methods for Descriptors” and “Metaclasses” for their subjects; “Operator Overloading Methods” for usage

details of __setattr__(), __getattr__(), and __getattribute__(); and Python’s object.c and

typeobject.c source code files, which host the implementations of instances and classes, respectively (in Python’s

source code distribution).

…from later related section…

Built-in Functions

super([type [, object]])

Returns the superclass of type. If the second argument is omitted, the super object returned is unbound. If the

second argument is an object, isinstance(object, type) must be true. If the second argument is a

type, issubclass(object, type) must be true. This call works for all classes in 3.X, but only for new-

style classes in Python 2.X, where type is also not optional.

In 3.X only, calling super() without arguments in a class method is implicitly equivalent to

super(containing-class, method-self-argument). Whether implicit or explicit, this call form

creates a bound proxy object that pairs the self instance with access to the calling class’s location on the

MRO of self’s class. This proxy object is usable for later superclass attribute references and method calls. See

also “New-style Classes: MRO” for more on MRO ordering.

Because super() always selects a next class on the MRO—the first class following the calling class having a

requested attribute, whether it is a true superclass or not—it can be used for method call routing. In a single-

inheritance class tree, this call may be used to refer to parent superclasses generically without naming them

explicitly. In multiple-inheritance trees, this call can be used to implement cooperative method-call dispatch

that propagates calls through a tree.

The latter usage mode, cooperative method-call dispatch, may be useful in diamonds, as a conforming method

call chain visits each superclass just once. However, super() can also yield highly implicit behavior which

for some programs may not invoke superclasses as expected or required. The super() method dispatch

technique generally imposes three requirements:

• Anchors: the method called by super() must exist—which requires extra code if no call-chain anchor is

present.

• Arguments: the method called by super() must have the same argument signature across the entire class

tree—which can impair flexibility, especially for implementation-level methods like constructors.

• Deployment: every appearance of the method called by super() but the last must use super() itself—

which can make it difficult to use existing code, change call ordering, override methods, and code self-

contained classes.

Because of these constraints, calling superclass methods by explicit superclass name instead of using super()

may in some cases be simpler, more predictable, or required. For a superclass S, the explicit and traditional

form S.method(self) is equivalent to the implicit super().method(). See also “New-Style

inheritance algorithm” for more on the super() attribute lookup special case; case; instead of running full

inheritance, its result objects scan a context-dependent tail portion of a class tree’s MRO, selecting the first

matching descriptor or value.

	Object-Oriented Programming
	Formal Inheritance Rules
	Classic classes: DFLR
	New-style classes: MRO
	Example: diamonds
	New-Style inheritance algorithm
	New-style precedence and context

	Built-in Functions

